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1. Introduction 

In financial risk management, value at risk 

(VaR) and expected shortfall (ES) are widely 

used as measures of risks. However, both VaR 

and ES fail to explicitly account for investor’s 

risk appetite even though VaR is more suitable 

for risk-loving investor and ES matches risk-

neutral ones (GARP, 2016). As a result, VaR and 

ES are questionable measures for the pre-

dominant group of risk-adverse investors. For 

this group of investors, the later spectral risk 

measure (SRM) is more appropriate since it 

incorporates risk aversion into VaR and ES on 

the basis of the expected utility theory. However, 

Dowd et al. (2008) examined SRM based on this 

theory and found that the application of 

exponential utility theory in SRM implies a 

constant coefficient of absolute risk aversion and 

that relative risk aversion coefficient is an 

increasing function of investor’s wealth. Such 

implication is in sharp contrast with the stylized 

facts that higher wealth endowment is associated 

with lower absolute risk aversion (i.e. the 

absolute risk aversion coefficient is the 

decreasing function of wealth) and constant 

coefficient of relative risk aversion (Copeland et 

al., 2005). Dowd et al. (2008) also illustrated the 

“bad behavior” of the power utility function in 

the weighting mechanism in which more weight 

is placed on lower loss and less weight on higher 

loss when the risk aversion coefficient is below 

one.  

This paper addresses the uncanny behavior of 

risk aversion coefficient and exponential utility 

function by employing alternative functions 

rooted in the distortion theory. This approach is 

deemed more appropriate and advocated in 

recent studies (Sereda et al., 2010; Guegan & 

Hassani, 2014). Since none of the study in the 

literature adopts this method for Vietnamese 

market, we embark on examining alternative 

spectral risk measures founded on fundamental 

distortion functions (e.g., dual-power, 

proportional hazard and Wang’s (2000) 

measures). The study, therefore, makes an 

attempt to shed more light on the obscure 

application of distortion theory on financial risks 

measurement, especially in Vietnam.  

2. Literature review 

In modern portfolio theory, Markowitz 

(1952) suggested the mean-variance approach, 

which considers portfolio variance or standard 

deviation as a simple measure of risk. Under this 

approach, the portfolio optimization is 

conditional on the level of risk aversion, and the 

resulting choice is, however, inconsistent with 

the second order stochastic dominance in 

expected utility theory (Copeland et al., 2005). 

Thus, the portfolio standard deviation, despite 

being a popular choice, is an improper measure 

of risk (GARP, 2016).  

Later, value at risk (VaR) arose out of a 

Morgan’s report in July 1993 and quickly 

became one of the standard risk measures in 

finance industry. The advantage of VaR is that it 

is especially effective with elliptical distribution 

of asset return (Grootveld & Hallerbatch, 2004). 

However, the VaR approach requires fine-tuning 

via stress testing and scenarios analysis. This 

approach also fails to report losses in excess of 

VaR level, and it is inconsistent with the 

diversification effects due to the lack of sub-

additivity property when the asset return does not 

follow elliptical distribution.  

To address this problem Artzner et al. (1997) 

and Artzner et al. (1999) proposed the coherent 

risk measures with four fundamental properties 

such as monotonicity, sub-additivity, linear 

homogeneity, and translational invariance. 

Tasche and Acerbi (2002) stated that Choquet 

expectation with a concave curve represents the 
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coherent risk measure in general which is 

consistent with the rule of second order 

stochastic dominance.  

Two prevalent coherent risk measure models 

that have recently been studied are expected 

shortfall (ES) and spectral risk measure (SRM). 

While ES is an average of the quantiles of a loss 

distribution, SRM is a weighted average of the 

quantiles, which connects the conventional risk 

measure to the individual’s risk aversion. 

Accordingly, SRM weights grow proportionally 

with the level of user’s risk aversion, implying 

that higher risk aversion is attached to higher 

level of risk and greater SRM value. SRM is also 

more appropriate than existing methods in that it 

is consistent with second order stochastic 

dominance in the expected utility theory (GARP, 

2016). The advantages of the SRM approach 

have been demonstrated in other studies on a 

handful of issues such as setting capital 

requirements for banks or acquiring optimal risk-

return tradeoff (Acerbi, 2004), proposing capital 

allocation (Overbeck, 2004; Abad & Iyengar, 

2015; Adam et al., 2007), or setting margin 

requirements (Cotter and Dowd, 2006). 

One of the major issues concerning the SRM 

approach is the choice of risk aversion function. 

Acerbi (2004) gauged just one risk aversion 

function derived from exponential utility theory. 

Dowd et al. (2008) examined the validity of 

exponential and power risk aversion and found 

that only the power level one satisfies the 

fundamental requirements of this approach. 

Recent studies suggested distortion theory as an 

alternative pathway, instead of expected utility 

theory, in the derivation of risk aversion 

function. Starting with Gzyl and Mayoral (2006) 

and Sriboonchitta et al. (2010) and subsequently 

Sereda et al. (2010) and Guegan and Hassani 

(2014), these papers aimed to introduce new 

asymmetric distortion risk measures based on the 

concept of risk for risk-adverse investors. Sereda 

et al (2010) proposed an asymmetric distortion 

risk measure based on power distortion function, 

which introduces different parameters on the left 

and right sides of the integral. However, Guegan 

and Hassani (2014) argued that it is insufficient 

to consider the same function with two different 

parameters. They indicated a convex distortion 

function for losses and a concave distortion 

function for gains and suggested the modified 

expected shortfall of the quantile using an S-

inversed shaped distortion function.  

This contemporary stream of research has not 

been widely tested. Therefore, this paper 

attempts to apply distortion theory and find 

empirical evidence of the new approach 

applicable to the Vietnam stock market.  

3. Research model 

3.1.  Spectral risk measure 

SRM shares several important properties of 

coherent risk measures. Assume that X and Y are 

the future values of two risky positions, a risk 

measure 𝜌(.) is coherent if it satisfies the 

following four properties: 

𝜌(X) + 𝜌(Y) ≥  𝜌(X+Y) 

𝜌(tX) = t 𝜌(X)  

𝜌(X) ≥  𝜌(Y), if X≥Y 

𝜌(X+n) = 𝜌(X) – n 

𝑛 > 0, 𝑡 > 0 

(Sub-additivity) 

(Homogeneity) 

(Monotonicity) 

(Translational 

invariance) 

The sub-additivity property means that the 

total risk of a combined portfolio is equal to or 

less than the sum of the risk of individual assets, 

which is similar to the diversification effects. 

The absence of this property in VaR renders VaR 

ineffective in reducing idiosyncratic risks in 

portfolio management, and hence especially 

inappropriate for highly volatile market. In 

addition, VaR and expected shortfall (ES) fail to 

explicitly account for investor’s risk aversion 

even though VaR is conventionally applicable 
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for risk-loving investors while ES is more 

suitable for risk-neutral ones. To address this 

problem, spectral risk measure (SRM) embeds 

investor’s risk aversion. It is defined as a 

weighted average of quantiles of return 

distribution of the portfolio.  

Mϕ = ∫ 𝜙(𝑝)𝐹𝑋
−1(𝑝)𝑑𝑝

1

0
 or Mϕ = 

∫ 𝜙(𝑝)𝑞𝑋(𝑝)𝑑𝑝
1

0
 (1) 

where:  

Mϕ: the Spectral Risk Measure 

X: the future value of the portfolio 

𝐹𝑋
−1(𝑝) or 𝑞𝑋(𝑝): the quantile function of X 

ϕ(p): weighting function or risk aversion 

function satisfying three following conditions:  

ϕ(p) ≥ 0 (non-negativity) 

∫ ϕ(p)𝑑𝑝
1

𝑎
 = 1 (normalization) 

ϕ(p1) ≥ ϕ(p2), for any p1 ≥ p2 
1

 or ϕ′(p) ≥ 0 

(weak increasingness) 

With the “weak increasingness” property, the 

weighting function assigns higher weight for 

higher loss and lower weight for lower loss, 

which represents the behavior of risk-adverse 

investors. However, when ϕ′(p) = 0, the weight 

is indifferent to different loss levels, hence 

including risk-neutral investors in SRM set. In an 

attempt to strictly include risk aversion Dow et 

al. (2008) removed the equal sign in the third 

condition (ϕ′(p) ≥ 0) and replaced the “weak 

increasingness” with ϕ(p1) > ϕ(p2) for any p1 

> p2 2 or ϕ′(p) > 0.  

Despite the modification on the “weak 

increasingness,” the lack of explicit control for 

investor’s risk aversion muddled Dow et al.’s 

(2008) explanations on “badly-behaved” cases in 

                                           
1 Acerbi (2002, 2004) considered this condition as 

decreasingness. However, he was dealing with distributions 

in which loss outcomes were negative rather than positive as 

in this paper. This difference is actually negligible. 

their adoption of the utility theory in spectral risk 

measures. Thus, the extra condition is added to 

control for risk aversion such that ϕ(Υ1) ≥ ϕ(Υ2), 

for Υ1 ≥ Υ2 or ϕ′(Υ1) ≥ 0, with p ∈ [𝑎, 𝑏] and 

0 < 𝑎 < 𝑏 < 1, where Υ reflects the investor’s 

risk aversion.  

3.2.  Distortion risk measure 

Distortion measures originated from the dual 

theory of choice under uncertainty, which 

advocated a risk measure based on a distortion 

function (Yaari, 1987). Denneberg (1994) 

developed the theory of integration to establish 

the connection between the concave distortion 

risk measures and spectral risk measures as 

follows: 

𝜌𝑓(X) = Mϕ =∫ 𝑥𝑑(𝑓 ∘ 𝐹)(𝑥)
+∞

−∞
 = 

∫ 𝜙(𝑝)𝐹𝑋
−1(𝑝)𝑑𝑝

1

0
  (2) 

where:  

Mϕ: the notation of spectral risk measure 

𝜌𝑓(X): the general formula of a concave 

distortion function 

∫ 𝑥𝑑(𝑓 ∘ 𝐹)(𝑥)
+∞

−∞
: the concave distortion 

function 

∫ ϕ(p)𝐹𝑋
−1(𝑝)𝑑𝑝

1

0
: the standard spectral risk 

measure 

𝑓(𝑝) = ∫ ϕ(u)𝑑𝑢
𝑝

0
 and p ∈ [0, 1] 

Through Equation (2), Dennerberg (1994) 

successfully proves the connection between a 

concave distortion function with a spectral risk 

measure. Thus, such concave distortion function 

has four properties of a SRM function.  

This paper derives spectral risk measures 
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from the following three distortion functions:   

Dual-power functions: 𝑓(𝑝) = 1 − 𝑝𝛾 

Proportional hazard transform function: 

 𝑓(𝑝) = (1 − 𝑝)
1

𝛾 

Wang’s distortion function:    

𝑔𝛼(𝑝) = Φ[Φ−1(1 − 𝑝) + 𝛼] 

where: 

𝑝: probability  

𝑓(𝑝): the distortion function of 𝑝 

Φ: the standard normal cumulative density 

function 

𝛼, 𝛾: risk aversion coefficient 

𝑔𝛼(𝑝): the distortion operator of p and α 

It should be noted that the distortion 

functions are defined such that the loss outcomes 

are expressed in positive numbers whereas loss 

is expressed in negative number in insurance 

context. 

According to Henryk and Silvia (2007), a 

concave distortion risk measure is considered a 

spectral risk measure (i.e. 𝜌𝑓(𝑋) = 𝑀𝜙) if the 

spectral risk function equates the first derivative 

of the distortion function 𝑓(𝑝) (i.e. 𝑓′(𝑝)). Given 

the distortion functions above, the respective risk 

aversion function (𝜙(𝑝)) are as follows:  

Dual-power measure: ϕ(p) =  γ 𝑝𝛾−1  

Proportional hazard measure: 

ϕ(p) =  
1

𝛾
 (1 − 𝑝)

1

𝛾
−1

  

Wang’s distortion measure:    

ϕ(p) =  𝑒[−αΦ−1(1−𝑝)− 
α2

2
]
  

Among the three, Wang’s measure increases 

more rapidly than the proportional hazard 

measure. Accordingly, investors satisfying 

Wang’s risk aversion function are more risk-

adverse than those with proportional hazard 

measure. According to Acerbi (2002), all of the 

three measures satisfy the first two conditions for 

an admissible risk aversion function. However, 

the limit of lambda needs to be defined so that 

the third condition is also satisfied.  

Dual-power measure 

ϕ(p) =  γ 𝑝𝛾−1  ϕ′(p) = γ(γ − 1)𝑝γ−2. 

As ϕ(p) > 0 so that γ > 1 

Figure 1 illustrates the case where 𝛾 equal to 

1.5 or 5. Higher loss is assigned with higher 

weight. An increase in lambda is translated into 

higher level of risk aversion, and even higher 

weight is assigned to higher loss. Thus, 𝛾 ∈ [0,5] 

satisfies the third condition of “weak 

increasingness.” 

Proportional hazard measure:  

ϕ(p) =  
1

𝛾
 (1 − 𝑝)

1

𝛾
−1

, therefore ϕ′(p) = 

1

𝛾
 (1 −

1

𝛾
)(1 − 𝑝)

1

𝛾
−2

 

As ϕ′(p) > 0, so that 𝛾 > 1 

Figure 2 depicts the behavior of proportional 

hazard transform weighting function for 𝛾 =

1.5 𝑎𝑛𝑑 𝛾 = 10, where higher loss is 

consistently assigned higher weight. When 𝛾 =

10, the weight attached to higher loss rise more 

rapidly, compared to the weight rise when 𝛾 =

1.5. Thus, this measure also meets the third 

condition of “weak increasingness” for 𝛾 ∈

[1.5,10]. 
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Wang’s distortion measure:  

ϕ(p) =  𝑒
[−αΦ−1(1−𝑝)− 

α2

2
]
, therefore ϕ′(p) = 

𝑒
[−αΦ−1(1−𝑝)− 

α2

2
]
 × 

𝛼𝑝

√2𝜋
×𝑒

−𝑥2

2  

The special feature of Wang’s measure is 

ϕ′(p) > 0 for all 𝑝 ∈ [0,1]. 

Similar to the other measures, Wang’s 

consistently satisfies the third condition of an 

admissible risk aversion function by assigning 

higher weight to higher loss. Notably, the 

assigned weight rises exponentially in the 99.5th 

to 100th percentile when ∝= 5, compared with a 

less dramatic increase in weight in the same 

Figure 1. Plot of the weighting function derived from dual power function against cumulative 

probability with risk aversion coefficient equal to 1.5 and 5 

Figure 2. Plot of the weighting function derived from proportional hazard transform against 

cumulative probability with risk aversion coefficient equal to 1.5 and 10 
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percentile range when ∝= 1.5.  

It is essential to note that even though 

weights attached to higher losses rise 

proportionally to higher lambda, it is only 

applicable to a certain interval of lambda, 

depending on which measure is used and number 

of slides p is broken into. In addition, for these 

three measures, 𝑀ϕ → ∫ 𝑞𝑝 𝑑𝑝
1

0
 as ∝→ 1, so the 

spectral risk measure approaches the mean of the 

loss distribution as 𝛾 approaches 1. Dowd et al. 

(2008) noted that this is an abnormal feature of 

spectral risk measure. Nonetheless, this paper 

rules out the special case that ∝= 1 (i.e. the 

spectral risk measure never equates the mean of 

the loss distribution). 

4. Methods 

4.1.  Estimating spectral risk measures 

Solving SRM following Equation (1) 

involves integration which would need executing 

numerically rather than analytically. To solve 

this integration four numerical quadrature 

methods to be considered consist of Trapezoid 

rule, Simpson’s rule, Niederreiter and Weyl 

quasi Monte Carlo (Borse, 1997). These four 

methods, estimating the integral by breaking the 

probability of the whole loss distribution into N 

slides, would give the estimates to converge on 

their true values as N becomes larger. Dowd et 

al. (2007) indicated that the first two methods 

lead to more accurate results than the last two in 

the event of larger N. Dowd and his colleagues 

also proved that Simpson rule is marginally 

better than Trapezoid rule in the estimation of the 

integral. For this reason Simpson’s rule is 

adopted in this study.  

This paper divides 𝑝 horizon into 9998 

intervals or 9999 points, each of which 

represents a quantile, and each quantile is 

calculated as the expected return of the portfolio 

minus the product of standard normal cumulative 

density function with the respective 𝑝 and 

standard deviation of the portfolio (i.e. a quantile 

𝑞𝑝 = 𝜇 − 𝑍𝑝 × 𝜎). Every quantile is then 

assigned a weight defined by the weighting 

function ϕ(p). 

Figure 3. Plot of the weighting function derived from Wang’s distortion function against 

cumulative probability with risk aversion coefficient equal to 1.5 and 5 
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4.2.  Estimating confidence intervals for 

spectral risk measures 

This paper runs both parametric and non-

parametric bootstrap. The bootstrap based on the 

most recent portfolio data reflects the future 

portfolio movements better than historical data 

since the latter is a bias reflection of the future. 

The procedure of estimation is as follows: 

With N slides set, in each of m bootstrap 

trials, simulate a set of N losses from assumed 

distribution on the basis of Wiener process. If a 

parametric bootstrap is used, the simulated losses 

are ranked from lowest to highest to acquire a set 

of N quantiles. If a non-parametric bootstrap is 

used, we calculate each quantile with the formula 

𝑞𝑝 = 𝜇 − 𝑍𝑝 × 𝜎, based on the law of large 

number and the central limit theorem. With each 

quantile corresponding to each confidence level, 

we multiply such quantile by the respective 

weight to obtain SRM. 

The above process is reiterated 𝑏 times to 

yield the confidence interval from a distribution 

of simulated SRM. 

This paper adopts the simulation bootstrap 

method since it is built upon a superior 

theoretical basis and especially suitable for such 

a volatile market as Vietnam. The model 

accuracy is determined by the number of slides 

and bootstrap setting; higher specification yields 

more accurate results. However, we implement 

9998 slides and 1000 bootstrap trials to balance 

the processing time and the model accuracy. We 

then simulate portfolio returns to follow normal 

distribution and estimate non-parametric 

quantiles, upon which the spectral risk measure 

can be computed. After that, we exemplify SRM 

when the risk aversion coefficient equal 25 and 

100 and apply 95% confidence interval. In the 

next step we take the next 14 consecutive returns 

of the portfolios in the respective 14 consecutive 

trading days, each corresponding with SRM with 

the risk aversion coefficient equaling 25, 100, 

and 200 and simulated from the past 100 trading 

day returns. Finally, we make a comparison 

between each estimated SRM and real loss. A 

similar process is implemented with VaR and ES 

at confidence levels of 95% and 99%, and a 

comparison of results is used to demonstrate the 

advantage of SRM.   

4.3.  Data 

This study has been performed on a pool of 

two portfolios, namely S&P500 and VNIndex 

under normal and volatile market conditions. 

Two portfolios reflect two different markets with 

distinctive features. US stock market is one of the 

most mature markets worldwide while 

Vietnamese stock market is still in its infant 

stage. Two market conditions chosen are 

predicated on daily movement of two portfolios. 

Risk measures are carried out from two sets of 

data. The first comprises 100 index prices of 100 

consecutive trading days in 2015. This set is used 

for bootstrapping and subsequently estimating 

confidence interval of simulated SRM. Figure 4 

illustrates that the standard deviation of VNIndex 

portfolio returns in volatile market is remarkably 

higher than that in normal market. Additionally, 

Vietnam stock market witnesses both upside and 

downside in the volatile market while the upside 

seems to prevail in normal condition. S&P500 

displays the same behavior as VNIndex, but 

substantially less volatile in both conditions. 

The second set consists of more than 750 

consecutive trading days including 100 prices 

above, utilized for plotting SRM curve against 

coefficient of risk aversion and for making 

comparisons among SRM, expected shortfall, 

and value-at-risk. Under volatile market 

condition, two portfolios’ prices are collected to 

examine the accuracy of SRM as a reflection of 

genuine risk of the portfolios. Thus, just the most 

recent part of the set is from volatile market 

condition, and the remaining part is from normal 
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market condition. Specifically, Figure 5 

demonstrates that the second half of the set 

illustrates stronger portfolio movement than the 

first half. Besides, both sets are not apparently 

normal distributed due to high values of kurtosis 

and skewness. 

Table 1 

Standard deviation of VNIndex and S&P500 in two conditions in the first dataset 

Standard Deviation In normal market condition In volatile market condition 

VNIndex 1.21% 2.07% 

S&P500 0.79% 1.60% 

   

 

VNIndex in normal market condition 

 

VNIndex in volatile market condition 

 

S&P500 in normal market condition 

 

S&P500 in volatile market condition 

Figure 4. Charts of the first dataset consisting of 100 trading returns of VNIndex and S&P500 

under normal and volatile market condition, collected from Stoxplus and Bloomberg 
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Table 2 

Standard deviation of VNIndex and S&P500 in two conditions in the second dataset 

Standard Deviation In normal market condition In volatile market condition 

VNIndex 1.08% 1.94% 

S&P500 0.75% 0.90% 

 

 

VNIndex in normal market condition 

 

VNIndex in volatile market condition 

 

S&P500 in normal market condition 
 

S&P500 in volatile market condition 

Figure 5. Charts of the second dataset consisting of 100 trading returns of VNIndex and S&P500 

under normal and volatile market condition, collected from Stoxplus and Bloomberg 
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5.  Results and discussion 

5.1.  Results 

Estimating spectral risk measures 

The following figures present the simulation 

results of dual power measure, the proportional 

hazard measure and Wang’s measure under four 

scenarios: VNIndex and S&P500 Index under 

normal and volatile conditions.  

Dual power measure  

The SRM formula for dual power measure is 

Mϕ = ∫ 𝛾𝑝𝛾−1𝑞𝑋(𝑝)𝑑𝑝
1

0
 . 

 

VNIndex in normal market condition 

 

VNIndex in volatile market condition 

 

S&P500 in normal market condition 

 

S&P500 in volatile market condition 

Figure 6. Plots of SRM curves of two portfolios against risk aversion coefficients under two 

different market conditions, based on Dual Power Measure and derived from the second dataset, 

using Matlab 2014a 
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In all four scenarios, SRM rises rapidly when 

risk aversion level (𝑎) reaches up to 30, but then 

the momentum is reduced when 𝑎 increases 

beyond 30. The curves are consistent with the 

risk aversion behavior in that the risk perception 

hikes when the risk aversion increases, but the 

marginal growth of SRM declines after a critical 

level of risk aversion (i.e. when 𝑎 = 30). Figure 

6 demonstrates that the SRM measure is more 

flexible while VaR and ES are more conservative 

with various levels of risk aversion. Particularly, 

SRM overwhelms both VaR and ES when the 

aversion level is under 30. SRM is also a better 

measure than ES for all levels of aversion.  

5.2. Proportional hazard measure  

The proportional hazard measure is based on 

the proportional hazard transform to build the 

following spectral risk aversion function:  

Mϕ = ∫
1

𝛾
(1 − 𝑝)

1

𝛾
−1

𝑞𝑋(𝑝)𝑑𝑝
1

0
 

It is plotted with two portfolios under two 

different market conditions as below: 

 

VNIndex in normal market condition 

 

VNIndex in volatile market condition 

 

S&P500 in normal market condition  

S&P500 in volatile market condition 

Figure 7. Plots of SRM curves of two portfolios against risk aversion coefficients under two different 

market conditions, based on Proportional Hazard Measure and derived from the second dataset, using 

Matlab 2014a 
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Figure 7 illustrates the proportional hazard 

measure for VNIndex and S&P500 indices under 

normal and volatile market conditions. 𝑀ϕ rises 

exponentially as 𝑎 increases up to 10 but then 

falls downhill toward zero level. Although SRM 

calculated in the proportional hazard transform 

satisfies three conditions of the risk aversion 

function and it is consistently well below VaR 

and ES at 95% confidence level in all four 

settings
3
, this measure is only applicable when 

aversion level 𝑎 is in the range between 0 and 10 

since SRM (𝑀ϕ) corresponding to this range is 

an increasing function. Meanwhile SRM outside 

such range is a decreasing function of 𝑎, which 

renders this measure ineffective. The rising part 

of the SRM curve will be marginally prolonged 

if 𝑝 is divided into more slides than the existing 

number (9999), making proportional hazard 

measure more efficient.  

Wang’s measure 

The Wang’s risk measure derived from 

Wang’s distortion function is computed as 

below: 

𝑀𝜙 = ∫ 𝑒[−αΦ−1(1−𝑝)− 
α2

2
]𝑞𝑋(𝑝)𝑑𝑝

1

0

 

The SRM under Wang’s distortion function 

in all four settings is resisted by the ES at 95%, 

indicating the advantage of Wang’s SRM over 

ES measure. It also demonstrates the flexibility 

of SRM over VaR in that VaR is conservative 

regardless of the variety of risk aversion 

coefficient 𝑎, while SRM is lower than VaR 

(95%) when 𝑎 ∈ (0,20) and higher than the 

same VaR when 𝑎 ∈ (20, 30). However, 

Wang’s SRM is only applicable when it is an 

increasing function of 𝑎, which is similar to 

                                           
3 The VaR and ES at 95% confidence level is too high above 

the SRM line, hence not being drawn in figure 7. 

proportional hazard measure. The rising part of 

SRM curves is also marginally prolonged when 

𝑝 horizon is divided into larger number of slides, 

resulting in a more efficient measure of 

portfolio’s risk.  

Estimating confidence intervals for spectral 

risk measures 

Table 3 further demonstrates the flexibility of 

SRM, which shows the SRM under Dual Power 

weighting function with three different levels of 

risk aversion. With SRM, the more risk-adverse 

the investor, the higher expected loss, whereas 

VaR and ES use confidence level (95% or 99%) 

to account for risk aversion in that a highly risk-

adverse investor chooses 99% and a less risk-

adverse investor chooses 95%. Both confidence 

levels are popular benchmarks and often reported 

as a rule of thumb. VaR and ES entail no 

common levels such as 93.7% or 91.2%, hence 

lacking flexibility compared to the continuous 

level of risk aversion ∝. Moreover, Table 4 

illustrates that SRM is better than the traditional 

VaR in volatile market condition, while being as 

good as VaR and ES measures in normal 

condition. 
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VNIndex in normal market condition 

 

VNIndex in volatile market condition 

 

S&P500 in normal market condition 

 

S&P500 in volatile market condition 

Figure 8. Plots of SRM curves of two portfolios against risk aversion coefficients under two 

different market conditions, based on Wang’s measure and derived from the second dataset 

Table 3 

The confidence intervals of two portfolios under normal and volatile market condition 

Portfolio VNIndex S&P500 

Market condition Normal Volatile Normal Volatile 

SRM a=25 [0.0232, 0.0233] [0.0413, 0.0414] [0.0151, 0.0152] [0.0325, 0.0326] 

a=100 [0.0294, 0.0295] [0.0519, 0.0520] [0.0191, 0.0192] [0.0407, 0.0408] 

a=200 [0.0318, 0.0319] [0.0561, 0.0562] [0.0207, 0.0208] [0.0439, 0.0440] 

VaR 95% [0.0195, 0.0196] [0.0350, 0.0351] [0.0127, 0.0128] [0.0277, 0.0278] 

99% [0.0277, 0.0278] [0.0491, 0.0492] [0.0180, 0.0181] [0.0385, 0.0386] 

ES 95% [0.0215, 0.0216] [0.0441, 0.0442] [0.0151, 0.0152] [0.0311, 0.0312] 

99% [0.0280, 0.0282] [0.0551, 0.0552] [0.0194, 0.0195] [0.0420, 0.0422] 

Notes: The intervals are measured with SRM, VaR, and ES with various parameters (SRM is 

measured with dual power weighting function). For each method, the reported value is the expected 

range of loss for SRM, VaR, and ES.  
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Table 4 

Number of cases where the loss in reality exceeds the benchmar in SRM, VaR, and ES 

 VaR ES SRM 

Market condition 95% 99% 95% 99% a=25 a=100 a=200 

S&P500 Normal 0 0 0 0 0 0 0 

Volatile 2 0 1 0 1 0 0 

VNIndex Normal 0 0 0 0 0 0 0 

Volatile 4 0 3 0 3 0 0 

5.3.  Discussion 

SRM curve entails different shapes for each 

distortion function (i.e. dual power, proportional 

hazard transform, and Wang’s), and each curve 

is suitable for the investor with different risk 

appetites. Our results demonstrate that dual 

power function results in the increasing SRM 

function while the other two distortion functions 

lead to parabolic shapes of SRM curve. 

However, only the increasing portion of the 

parabola in the latter two methods is applicable 

to risk measurement since it is consistent with the 

principle that higher weight is attached to higher 

loss and that lower weight is assigned to lower 

loss. Thus, dual power measure can be used for 

full spectrum of risk aversion coefficient 𝑎 while 

Wang’s and proportional hazard functions are 

limited to a certain level of risk aversion where 

the respective SRM is an increasing function. 

One noteworthy feature of SRM is that this 

measure, based on bootstrapping method, is 

more conservative than VaR and ES, which are 

measured upon historical data. More 

importantly, this paper finds that SRM barrier is 

less frequently penetrated than VaR and ES in 

volatile market conditions, which is consistent 

with the theoretical framework.  

6. Conclusion  

This paper has examined spectral risk 

measure derived from three distortion functions. 

It has been found that even though three 

respective weighting functions satisfy all the 

conditions of a risk aversion function, they do not 

necessarily create a meaningful risk measure for 

risk-averse investors. This indicates a lack of 

another requirement for selecting appropriate 

functions to transform to spectral risk measures. 

We also discover that when investigating each 

risk measure curve, users should be concerned 

about the range of risk aversion coefficient so 

that the derivatives of risk aversion function 

along with the coefficient is above zero and on 

the use of estimation rule, such as Simpson’s, 

and also should consider the number of slides of 

cumulative probability that may give rise to a 

gain in the risk measure but takes more time to 

estimate. 

Among the three distortion functions gauged, 

dual power measure may be the most sensible 

measure with desirable properties. The risk 

measure not only meets requirements of a 

spectral risk measure, but also smoothly 

increases along with risk aversion coefficient of 

users. The measure is more flexible and useful 
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for the users than value-at-risk and expected 

shortfall. The measure would be even better at 

reflecting the true portfolio risk if combined with 

simulation approach in order to keep the measure 

updated with recent information. Meanwhile, 

proportional hazard and Wang’s measure, 

despite satisfying conditions of an expected 

weighting function of spectral risk measure, may 

not be useful for some group of risk averse users 

as their peak is not as high as VaR and ES at 

confidence level of 99%, which is presently 

within risk appetite of some users like 

commercial banks.  

The paper also has exhibited no major 

differences when spectral risk measure is 

employed to measure portfolio risk in Vietnam 

and in the U.S. The discrepancy is resulted from 

volatility of each portfolio, rather than the 

essence of the model. Provided that users are 

risk-averse, they can take advantage of spectral 

risk measures with respective weighting 

functions matching their levels of risk aversion. 

SRM is especially suitable for Vietnam bankers 

who manage portfolios or risky loans since it is 

flexible in the consideration of various 

borrower’s risk aversion, compared to VaR and 

ES, which only account for risk aversion with the 

change of confidence level (i.e. 95% or 99%). 

We also demonstrate that distortion functions, 

despite satisfying Acerbi’s (2002, 2004) 

conditions of “well-behaved” risk measure, 

requires extra conditions to control for the 

abnormality of SRM curves when the SRM is the 

decreasing function of risk aversion coefficient 

(𝑎).  

Commercial bankers may take advantage of 

spectral risk measure in volatile market 

conditions since this measure seems to 

outperform the traditional VaR and ES. In 

addition, SRM  not only  entails a cautious 

approach to risk measure, which is consistent 

with banker merit, but it also facilitates the 

flexible change in the risk tolerance level to 

match fluctuating economic conditions.  

Further research may focus on other 

distortion functions to extend their applicability 

in risk measuring. Potential topic may also refer 

to the examination of various specifications of 

distortion function so that the resulting SRM 

curve is suitable for a particular group of risk-

adverse investors. 
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