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VaR và CVaR là các vấn đề thu hút nhiều quan tâm trong lĩnh vực 
nghiên cứu đo lường rủi ro đối với dữ liệu tài chính. Tuy nhiên, hầu hết 
các nghiên cứu chỉ dừng lại ở công thức tính dựa trên xấp xỉ dữ liệu 
thông qua một phân phối xác suất trong khi phân phối của dữ liệu thực 
thông thường có dạng hỗn hợp các phân phối xác suất. Chính vì vậy, 
cần thiết phải có các nghiên cứu tính toán VaR và CVaR trong trường 
hợp phân phối của dữ liệu có dạng hỗn hợp các phân phối xác suất. 
Hơn nữa, vì tính toán cũng đòi hỏi thời gian tính toán nhanh nên tác 
giả ưu tiên sử dụng phương pháp mô phỏng Monte Carlo. Tác giả đề 
nghị thuật toán tính giá trị VaR và CVaR trong trường hợp phân phối 
xác suất là dạng hỗn hợp bằng cách hiệu chỉnh phương pháp mô 
phỏng Monte Carlo cho phù hợp với dạng hỗn hợp các phân phối xác 
suất. Thêm vào đó, tác giả minh họa kết quả tính toán trong các trường 
hợp mô phỏng đã biết phân phối xác suất thành phần cũng như trường 
hợp chưa biết trước các phân phối xác suất thành phần, thông qua bộ 
dữ liệu thực về giá đóng cửa của chứng khoán Việt Nam bằng hỗn hợp 
của các phân phối. Các kết quả tính toán dựa trên thuật toán mà tác 
giả đề nghị được đánh giá thông qua xác suất đuôi cũng như độ lệch 
chuẩn. 
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Abstract 

VaR and CVaR are of great concern in risk measurement field applying 
for financial data. However, studies only stopped at the formula based 
on an approximation of data through a probability distribution, while 
the distribution of real data is usually a mixture of probability 
distributions. Therefore, it is necessary to study the VaR and CVaR 
estimating in the case of a mixture of probability distributions. 
Furthermore, the estimations also require short computational time so 
the author prefers to use the Monte Carlo simulation method. The 
author proposes the VaR and CVaR calculations in the case of 
probability distributions that are mixed by calibrating the Monte Carlo 
simulation method to suit a mixture of probability distributions. In 
addition, the author illustrates in cases where the simulation is known 
to distribute the probability of the component as well as the unknown 
case of the probability distribution of the component via the real data 
of the closing price of the Vietnam stock by a mixture of probability 
distributions. The algorithm-based estimation results that the author 
recommends is evaluated by the tail probability as well as standard 
deviation. 

 

1. Giới thiệu  

Value at Risk, ký hiệu là VaR (hay còn gọi là phân vị – Quantile) (Rockafellar & cộng sự, 2014) 
là một kỹ thuật được sử dụng rộng rãi trong lĩnh vực quản lý rủi ro, như trong đo lường và kiểm soát 
rủi ro, quản lý rủi ro hoạt động, quản lý đầu tư, quản lý rủi ro tín dụng, quản lý rủi ro hoạt động, quản 
lý rủi ro tích hợp… theo các nghiên cứu của Hendricks (1997) và Jorion (1996). Thông qua việc kiểm 
soát rủi ro nhằm giúp cho các nhà đầu tư, các công ty đưa ra các quyết định như: Quyết định đầu tư, 
lựa chọn phát triển sản phẩm, phương án kinh doanh, lựa chọn ban điều hành công ty, lựa chọn danh 
mục đầu tư… Một số phương pháp tính toán VaR thông thường hay được sử dụng như: Phương pháp 
tính toán dựa vào hàm mật độ thực nghiệm, phương pháp bootstrap, phương pháp mô phỏng Monte 
Carlo.  

- Thứ nhất, trong phương pháp tính toán VaR dựa vào hàm mật độ thực nghiệm, Jorion (2001) 
cùng Martins-Filho và cộng sự (2018) cho rằng đây là cách tiếp cận phi tham số với ưu điểm là không 
cần biết dạng của hàm mật độ xác suất thực nghiệm 𝑓 . . Tuy nhiên, theo Rockafellar và Uryasev 
(2002), Hendricks (1997), phương pháp này có hạn chế là nếu cỡ mẫu nhỏ thì giá trị VaR sẽ không 
ổn định khi chỉ cần tăng thêm hay giảm đi một hay một vài quan sát sẽ rất dễ dẫn đến tình trạng giá 
trị VaR bị tăng lên hoặc giảm xuống nhiều, mà điều này rất hay xảy ra trong thực nghiệm. Còn trong 
trường hợp cỡ mẫu quá lớn, việc sắp xếp theo độ lớn của dữ liệu với n là cỡ mẫu lớn sẽ tốn rất nhiều 
thời gian và bộ nhớ, mặc dù Zhao và Luo (2018) đã cải thiện được đáng kể nhưng tính toán vẫn còn 
khá phức tạp vì bộ dữ liệu cần được sắp xếp từ nhỏ đến lớn, sau đó VaR với xác suất a chính là phần 
tử ở vị trí thứ a% × n. Thêm nữa, trong các nghiên cứu của Adams & cộng sự (2014) hay Berkowitz 
và O'Brien (2002), các tác giả tính toán các giá trị VaR thông qua mô hình ARCH, GARCH, ARMA. 
Tuy nhiên, đây thực chất là tính VaR của một phân phối thực nghiệm hay còn gọi là phân phối xác 
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suất của biến phụ thuộc. Phân phối xác suất của biến phụ thuộc là tổ hợp tuyến tính của các phân phối 
tham số (phân phối chuẩn) với trọng số là giá trị của các biến độc lập (phi ngẫu nhiên) và cộng thêm 
nhiễu trắng (phân phối chuẩn).    

- Thứ hai, tính toán VaR bằng phương pháp Bootstrap như nghiên cứu của Hall (1990), phương 
pháp này dựa trên chọn mẫu ngẫu nhiên có hoàn lại. Điều cần lưu ý là kích thước mẫu thực hiện 
Bootstrap phải bằng với kích thước mẫu hiện có. Phương pháp này giúp tạo ra một bộ dữ liệu đủ lớn 
và tin cậy cho các suy diễn thống kê tiếp theo.  

- Thứ ba, sử dụng phương pháp mô phỏng Monte Carlo. Đây là phương pháp sử dụng cách tiếp 
cận tham số, trong khi hai phương pháp ở trên đều sử dụng cách tiếp cận phi tham số. Theo Jorion 
(2001), Engle và Manganelli (2004), đối với phương pháp mô phỏng Monte Carlo, trước tiên cần dựa 
vào dữ liệu lịch sử nhằm ước lượng bộ dữ liệu tuân theo phân phối xác suất nào rồi tính giá trị các 
tham số tương ứng các phân phối xác suất đó. Tuy nhiên, một khó khăn của phương pháp mô phỏng 
Monte Carlo là xem xét ước lượng bộ dữ liệu lịch sử tuân theo phân phối xác suất nào bởi vì đối với 
dữ liệu thực tế, phân phối của bộ dữ liệu hầu như rất hiếm trường hợp xảy ra hình dạng xấp xỉ phân 
phối chuẩn (cân đối và đuôi nhỏ) mà thông thường sẽ có hình dạng lệch và đuôi bự (cũng được biểu 
diễn dưới dạng hỗn hợp các phân phối chuẩn theo Duffie và Pan (1997), Jorion (2001)); hoặc trường 
hợp phân phối có dạng một đường cong hỗn hợp của nhiều phân phối xác suất. Các phương pháp để 
kiểm tra xem bộ dữ liệu có tuân theo một phân phối xác suất hay hỗn hợp các phân phối xác suất hay 
không theo cách trực tiếp như: Phương pháp hợp lý cực đại (Maximum Likelihood), giá trị entropy 
cực đại (Maximum Entropy), chỉ số AIC (Akaike Information Criterion) (Engle & Manganelli, 2004), 
chỉ số BIC (Bayesian Information Criterion)… hay theo cách gián tiếp như các bài toán kiểm định 
giả thuyết thông qua kiểm định Chi bình phương (Chi–square) trong bài toán lựa chọn mô hình phù 
hợp nhất (The Goodness of Fit), kiểm định Kolmogorov – Smirnov (Duffie & Pan, 1997). 

Qua các phân tích ở trên, trong ba phương pháp tính VaR thì phương pháp mô phỏng Monte Carlo 
vừa đảm bảo được thời gian nhanh chóng vừa kiểm soát được các sai số. Thật vậy, đối với mỗi giá trị 
VaR đã tính được thì luôn cần một bước kiểm tra lại nhằm đảm bảo tính ổn định của các giá trị VaR. 
Khi áp dụng vào phương pháp tính VaR dựa vào hàm mật độ thực nghiệm, một trong những bước cần 
thiết chính là kiểm tra tính ổn định của các giá trị VaR tính được thông qua việc thay đổi dữ liệu. Tuy 
nhiên, việc thay đổi dữ liệu sẽ dẫn đến hàm mật độ thực nghiệm sẽ thay đổi, đặc biệt, sự thay đổi sẽ 
đáng kể trong trường hợp dữ liệu ban đầu hạn chế. Chính vì vậy, phương pháp tính VaR dựa vào hàm 
mật độ thực nghiệm đòi hỏi bộ dữ liệu đủ lớn nhằm đảm bảo các giá trị VaR tính được xấp xỉ nhau, 
đảm bảo tính ổn định của các giá trị VaR thì mới kết thúc được quá trình tính toán. Còn đối với việc 
tính VaR dựa vào phương pháp Bootstrap, để thực hiện phương pháp này, trước hết, tác giả sẽ chọn 
mẫu ngẫu nhiên từ mẫu ban đầu, và vì thế, mẫu ngẫu nhiên được chọn ra sẽ có các xác suất với từng 
quan sát tương ứng của mẫu, tức là có thể biểu diễn dữ liệu mới tạo ra theo bootstrap có dạng phân 
phối xác suất rời rạc. Do đó, các giá trị VaR vừa tính được không đảm bảo sự ổn định nên cần phải 
thực hiện lại các phép tính rồi kiểm tra cho đến khi sai lệch giữa các giá trị VaR đã tính ở mức chấp 
nhận được. Đến lúc này, giá trị VaR mới có thể sử dụng được. Dựa vào phương pháp thực hiện, tác 
giả nhận thấy hai phương pháp tính VaR dựa vào hàm mật độ thực nghiệm và bootstrap tốn khá nhiều 
thời gian và công sức mới sử dụng được kết quả, hơn nữa cũng không đảm bảo được sai lệch giá trị 
VaR ở lần tính sau thì thấp hơn ở lần tính trước. Tất nhiên, phương pháp tính VaR dựa vào mô phỏng 
Monte Carlo cũng cần dựa vào hàm mật độ thực nghiệm như phương pháp dựa vào hàm mật độ thực 
nghiệm. Tuy nhiên, để tính giá trị VaR sau đó thì chỉ cần mô phỏng dữ liệu từ hàm mật độ thực 
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nghiệm. Do dữ liệu là mô phỏng dựa vào dạng phân phối xác suất nên đảm bảo dữ liệu tuân theo phân 
phối xác suất liên tục, bởi vậy, các giá trị VaR tính được sẽ không sai lệch nhau nhiều nên có thể kiểm 
soát được sai số bằng cách tăng số lượng mô phỏng.  

Bên cạnh giá trị VaR, một số nghiên cứu về rủi ro như nghiên cứu của Rockafellar & cộng sự 
(2014) còn sử dụng thêm Conditional Value at Risk, ký hiệu là CVaR hay còn gọi là siêu phân vị 
(Superquantile), và tính toán khoảng tin cậy với xác suất (1–a) (Confidence Interval) trong đo lường 
rủi ro. Nếu VaRa là mức phân vị tại mức a thì CVaRa thực chất là trung bình của các VaRb, với           
b ≥ a, giá trị CVaR có tác dụng hạn chế tính không ổn định của VaR (Rockafellar & Uryasev, 2002). 
Còn bài toán khoảng tin cậy (1–a) thì khoảng tin cậy chính là tìm hai mức phân vị VaRh và VaRh+(1–

a), với 𝜂 là mức ý nghĩa bất kỳ nhận giá trị trong đoạn 0; 𝛼 , bài toán này đã được tính toán bằng mô 
phỏng Monte Carlo như nghiên cứu của Lê Thanh Hoa và cộng sự (2017), Dietz và cộng sự (2016). 

Chính vì vậy, bài nghiên cứu này sẽ tập trung theo hướng áp dụng phương pháp Monte Carlo trong 
tính toán VaR và CVaR. Tuy nhiên, đối với dữ liệu thực tế, hầu như rất hiếm khi xảy ra trường hợp 
phân phối của bộ dữ liệu tuân theo một hàm mật độ xác suất cụ thể nào đó, thông thường phân phối 
của bộ dữ liệu thực tế sẽ có dạng một đường cong là hỗn hợp của các phân phối xác suất. Theo Engle 
và Manganelli (2004), một cách thực hiện khác là thông qua một mô hình hồi quy dạng tuyến tính 
hoặc dạng phi tuyến. Tuy nhiên, mô hình hồi quy dạng tuyến tính biểu diễn dưới dạng phương trình 
(1) cũng thực chất là hỗn hợp của các phân phối chuẩn: 

 𝑌 = 𝛽+ + 𝛽-𝑋- + 𝛽/𝑋/ + ⋯+ 𝛽1𝑋1 + 𝜖 (1) 

Trong đó, các tham số ước lượng 𝛽	của 𝛽 xấp xỉ phân phối chuẩn (Engle & Manganelli, 2004) và 
sai số (nhiễu) 𝜖 là nhiễu trắng, cũng xấp xỉ phân phối chuẩn trong khi các giá trị 𝑋4, 𝑖 = 1,𝑚 là các 
giá trị phi ngẫu nhiên. Hay mô hình hồi quy phi tuyến dạng ước lượng hạt nhân (Fit Kernel), nếu 
không có các chỉnh sửa gì thêm thì cũng thực chất là hỗn hợp của các phân phối chuẩn, cụ thể là dạng 
GMM (Gaussian Mixture Model) (Hennig, 2012).  

Do đó, về cơ bản, nghiên cứu của Engle và Manganelli (2004) tính VaRa dựa trên hỗn hợp các 
phân phối chuẩn và sử dụng phương pháp mô phỏng Monte Carlo dựa trên mô hình GARCH(1,1). 
Tuy nhiên, mô phỏng Monte Carlo chỉ có tác dụng trong việc ước lượng mô hình nhằm chọn ra mô 
hình tốt nhất thông qua giá trị hợp lý cực đại, sau đó dựa vào mô hình này để tính ra VaR. Vì vậy, về 
thực chất phương pháp mô phỏng Monte Carlo trong các nghiên cứu của Engle và Manganelli (2004), 
Duffie và Pan (1997), Krokhmal và cộng sự (2002) không đánh giá được các giá trị VaR nhận giá trị 
như thế nào và độ biến động của các giá trị VaR như thế nào. Mô phỏng Monte Carlo với một phân 
phối như phân phối chuẩn, phân phối gamma, phân phối Weibull, phân phối Pareto… tức là chỉ mô 
phỏng một dạng phân phối xác suất có đánh giá trung bình (Dietz & cộng sự, 2016) và độ lệch chuẩn 
(Jorion, 1996).  

Trong bài nghiên cứu này, tác giả sẽ hướng đến tính toán VaR và CVaR thông qua mô phỏng 
Monte Carlo bằng hỗn hợp các phân phối xác suất. Theo đó, các phần tiếp theo của nghiên cứu gồm 
có: Phần 2 trình bày giá trị VaR và CVaR; Phần 3 trình bày phương pháp lấy mẫu quan trọng 
(Important Sampling) và phương pháp mô phỏng Monte Carlo trong tính toán VaR và CVaR; Phần 4 
sẽ nêu ứng dụng tính toán VaR và CVaR bằng mô phỏng Monte Carlo thông qua hỗn hợp các phân 
phối xác suất; và phần 5 kết luận. 
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2. Giá trị VaR và giá trị CVaR 

2.1. Định nghĩa 1 – VaR   

Trước hết, tác giả giới thiệu định nghĩa VaR dựa theo kết quả nghiên cứu của Rockafellar và 
Uryasev (2002), Pflug (2000), Huang và cộng sự (2014), Belles-Sampera và cộng sự (2014). 

Cho biến ngẫu nhiên X, hàm phân phối xác suất FX(.). Giá trị VaRa	, 𝛼 ∈ [0, 1] là giá trị được xác 
định bởi công thức (2): 

 𝑉𝑎𝑅> = inf 𝑥 𝐹D 𝑥 ≥ 𝛼} = 𝐹DG-(𝛼) (2) 

Ngoài ra, còn có thêm một đại lượng đo lường rủi ro khi thực hành đó chính là độ đo CVaR, hay 
còn được gọi là giá trị gặp rủi ro đuôi TVaR (Tail Value-at-Risk) (Belles-Sampera & cộng sự, 2014).  

2.2. Định nghĩa 2 – CVaR  

Tiếp theo, tác giả giới thiệu định nghĩa CVaR dựa theo kết quả nghiên cứu của Rockafellar và 
Uryasev (2002), Pflug (2000), Huang và cộng sự (2014). 

Cho biến ngẫu nhiên X, hàm phân phối xác suất FX(.). Giá trị CVaRa là giá trị được xác định bởi 
công thức (3) trong trường hợp hàm phân phối xác suất FX(.) dạng rời rạc:  

 𝐶𝑉𝑎𝑅> =
𝑉𝑎𝑅KL

M	
NO-

𝑛
									 1 ≥ 𝛽N ≥ 𝛼  (3) 

𝑇𝑟𝑜𝑛𝑔	đó, 𝑛 là số lượng mô phỏng. 

Trong trường hợp hàm phân phối xác suất 𝐹D .  dạng liên tục, CVaRa được xác định bởi công 
thức (4): 

 𝐶𝑉𝑎𝑅> = 𝑧×𝑑𝐹D> 𝑧
Z[

G[
 (4) 

Trong đó, hàm phân phối xác suất 𝐹D> của CVaRa được định nghĩa bởi công thức (5): 

 𝐹D> 𝑧 =
0 							(𝑛ế𝑢	𝑧 < 𝑉𝑎𝑅>)

𝐹D 	𝑧 − 𝛼
1 − 𝛼

							(𝑛ế𝑢	𝑧 ≥ 𝑉𝑎𝑅>)
 (5) 

2.3. Hệ quả 1 

Tiếp theo, tác giả giới thiệu mối liên hệ giữa VaR và CVaR thông qua một hệ quả, theo Rockafellar 
và Uryasev (2002): 

Từ định nghĩa VaR và CVaR ở trên, ta có: 

𝑉𝑎𝑅> ≤ 𝐶𝑉𝑎𝑅>. 

 

 



	
 Lê Thanh Hoa, JABES năm thứ 29(9), 2018, 53–72  

58	
	

2.4. Định nghĩa 3 – ES  

Bên cạnh các độ đo hay được sử dụng trong đo lường rủi ro như VaR và CVaR thì một độ đo cũng 
được các nhà nghiên cứu quan tâm đó là thâm hụt dự kiến ES (Expected Shortfall), Acerbi và Tasche 
(2002). 

Giả sử tập sắp thứ tự 𝑥 - ≤ 𝑥 / ≤ ⋯ ≤ 𝑥 M  và mức ý nghĩa 𝛼, giá trị 𝜔 = 𝑛×𝛼 =
max 𝑘 𝑘 ≤ 𝑛×𝛼, 𝑘 ∈ 𝑁}. Giả sử phân vị mức 𝛼 là 𝑥(g). Khi đó, giá trị ES được tính theo công thức (6): 

 𝐸𝑆> = −
𝑥(4)g

4O-

𝜔
 (6) 

Thông qua Định nghĩa 2 và 3, tác giả nhận thấy cách tính toán của CVaR và ES gần giống nhau, 
chỉ có khác nhau là CVaR quan tâm đến các giá trị lớn hơn hoặc bằng VaR, còn ES lại quan tâm đến 
các giá trị nhỏ hơn hoặc bằng VaR. Do đó, tùy từng yêu cầu của vấn đề đặt ra thì ngoài tính VaR thì 
chỉ cần tính thêm CVaR hoặc ES. 

3. Phương pháp lấy mẫu quan trọng và phương pháp mô phỏng Monte Carlo 

trong tính toán VaR và CVaR 

3.1.  Phương pháp lấy mẫu quan trọng  

Mô hình hỗn hợp của m phân phối xác suất, giả sử hàm mật độ xác suất 𝑓j(. ) với xác suất tương 

ứng là 𝑝j, 𝑗 = 1,𝑚 (Robert, 2004). Khi đó, với mỗi quan sát 𝑋 có hàm mật độ xác suất tương ứng là 
𝑓 .  được biểu diễn dưới dạng công thức (7): 

 𝑓(𝑥) ∼ 𝑝-𝑓- 𝑥 + 𝑝/𝑓/ 𝑥 + ⋯+ 𝑝1𝑓1 𝑥  (7) 

Theo Robert (2004), phương pháp lấy mẫu quan trọng (Important Sampling) là một cách xấp xỉ 
tích phân trong công thức (8): 

 𝐸n ℎ 𝑋 = ℎ(𝑥)𝑓(𝑥)𝑑𝑥
D

 (8) 

Dựa trên mẫu tổng quát 𝑋-, 𝑋/, … , 𝑋M từ một phân phối xác suất với hàm mật độ rời rạc g xác định 
trước và xấp xỉ bởi công thức (9): 

 𝐸n ℎ 𝑋 ≈
1
𝑛

𝑓 𝑋j
𝑔 𝑋j

ℎ 𝑋j

M

4O-

 (9) 

Và giá trị ước lượng trong công thức (9) hội tụ về công thức (8). Phương pháp này cũng được dựa 
trên phương pháp thay thế cho hàm mật độ xác suất g trong công thức (8) thông qua công thức (10): 

 𝐸n ℎ 𝑋 ≈ 	 ℎ 𝑥
𝑓 𝑥
𝑔 𝑥

𝑔 𝑥 𝑑𝑥
r

 (10) 
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3.2.   Phương pháp mô phỏng Monte Carlo trong tính toán VaR và CVaR 

Tác giả đề xuất thuật toán tính toán VaR và CVaR bằng mô phỏng Monte Carlo với hàm mật độ 
xác suất tổng quát xác định theo công thức (11):  

 𝑓 𝑥 = 𝑝-×𝑓- 𝑥 + 𝑝/×𝑓/ 𝑥 + ⋯+ 𝑝1×𝑓1 𝑥  (11) 

Trong đó, các bước thực hiện được tóm tắt ở Bảng 1. 

Bảng 1. 
Các bước thực hiện mô phỏng Monte Carlo trong tính toán VaR và CVaR 

Đầu vào 
Các hàm mật độ xác suất thành phần 𝑓j(. ) với xác suất tương ứng 𝑝j, 𝑗 = 1,𝑚, đồng thời 
mức ý nghĩa 𝛼. 

Bước 1 Mô phỏng bộ dữ liệu: Giả sử số lượng cần mô phỏng là 𝑛. 

Bước 1a. Mô phỏng các hàm mật độ thành phần 𝑓j(. ) với cỡ mẫu tương ứng là 	
[𝑛×𝑝j] dòng và 𝑛 cột. 

Bước 1b. Bộ dữ liệu bao gồm 𝑚 phân phối có tất cả 𝑛 dòng và 𝑛 cột. 

Bước 1c. Sắp xếp bộ dữ liệu theo từng cột với các giá trị từ nhỏ tới lớn. 

 Bước 2 Xác định các giá trị VaRa và CVaRa theo từng cột: 

Bước 2a. Giá trị 𝑉𝑎𝑅>
j  tại mỗi cột là phần tử ở vị trí 𝑛×𝛼 , đối với bộ dữ liệu đã sắp xếp từ 

nhỏ đến lớn của mỗi cột tương ứng. 

Bước 2b. Các giá trị của bộ dữ liệu tại mỗi cột là phần tử từ vị trí 𝑛×𝛼  đến vị trị cuối cùng 
𝑛, đối với bộ dữ liệu đã sắp xếp từ nhỏ đến lớn của mỗi cột tương ứng. 

Bước 2c. Giá trị 𝐶𝑉𝑎𝑅>
j  là trung bình của các giá trị đã được tính ra từ bước 2b. 

Bước 2d. Kiểm tra các kết quả vừa tính toán:  

Tính các xác suất thành phần theo từng cột của hàm mật độ xác suất trên khoảng các giá trị, 

bao gồm các giá trị nhỏ hơn VaRu
v , tức là tính Prob. X < VaRu

v = α. 

Tính xác suất trung bình của các xác suất thành phần 
}~��. ������

�
�

�
  

Kiểm tra xác suất trung bình có bằng α	hay không. 

Tính độ lệch chuẩn của xác suất thành phần (nhằm kiểm tra tính ổn định). 

Đầu ra Các giá trị ước lượng 𝑉𝑎𝑅> =
����

��
���

M
 và 𝐶𝑉𝑎𝑅> =

�����
��

���

M
 

 

Nhận xét: Một lưu ý nhỏ trong các mô phỏng hỗn hợp cần phải được thực hiện với cỡ mẫu dựa 
trên độ lớn xác suất tương ứng thì mới ra được kết quả chính xác hơn. Minh chứng bằng việc mô 
phỏng hai phân phối chuẩn N(4; 0,22) và N(4; 0,32) với xác suất tương ứng là 0,8 và 0,2, có dạng hai 
đỉnh theo Hình 1 với số lượng mô phỏng n = 5.000. 
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Hình 1. Hình dạng của phân phối xác suất hỗn hợp 0,8 × N(4; 0,22) + 0,2 × N(4; 0,32) 

Kết quả tính toán VaR0,05 và CVaR0,05 trong trường hợp số lượng mô phỏng số cột là  
n = 5.000 và số dòng của từng phân phối bằng n hoặc bằng n x pj tương ứng được tính toán và trình 
bày trong Bảng 2. 

Bảng 2.  
Các kết quả tính toán VaR0,05 và CVaR0,05 trong trường hợp số lượng mô phỏng số cột n = 5.000 với 
phân phối xác xuất hỗn hợp là 0,8 và 0,2 

Xác suất thành phần 
khác nhau 

Giá trị  
VaR0,05 

Độ lệch 
chuẩn của 

VaR0,05 

Giá trị 
CVaR0,05 

Độ lệch 
chuẩn của 
CVaR0,05 

Xác suất 
của hàm 𝑓 
nhận giá trị 

nhỏ hơn 
VaR0,05 

Độ lệch chuẩn của 
xác suất của hàm 
𝑓 nhận giá trị nhỏ 

hơn VaR0,05 

Số dòng bằng  
n = 5.000 

1,6155 0,0073 3,0802 0,0025 0,0200 0,0009 

Số dòng bằng  
𝑛×𝑝j = 5.000×𝑝j 

1,7965 0,0130 3,7038 0,0031 0,0498 0,0027 

Rõ ràng, bài nghiên cứu kỳ vọng kết quả phải thể hiện được xác suất của  
hàm 𝑓 từ −∞ đến VaR0,05 xấp xỉ bằng 0,05. Tuy nhiên, kết quả trong hai cột cuối của Bảng 2 cho thấy 
chỉ có trường hợp mô phỏng số dòng bằng 𝑛×𝑝j thì mới đạt kỳ vọng mong muốn, còn trường hợp số 
dòng bằng 𝑛 thì không đạt kỳ vọng mong muốn.  

Điều này có thể giải thích như sau: Do xác suất của các phân phối khác nhau dẫn đến nếu số lượng 
mô phỏng bằng nhau thì xác suất mỗi phân phối không còn được đảm bảo, cho nên kết quả sẽ bị sai 
lệch. Tác giả sẽ thực hiện lại cách tính trên với tỷ lệ xác suất bằng nhau là 0,5 và 0,5.  
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Bảng 3.  
Các kết quả tính toán VaR0,05 và CVaR0,05 trong trường hợp số lượng mô phỏng số cột là n = 5.000 
với phân phối xác xuất hỗn hợp là 0,5 và 0,5 

Xác suất thành phần 
bằng nhau 

Giá trị  
VaR0,05 

Độ lệch 
chuẩn của 

VaR0,05 

Giá trị 
CVaR0,05 

Độ lệch 
chuẩn của 
CVaR0,05 

Xác suất 
của hàm 𝑓 
nhận giá trị 

nhỏ hơn 
VaR0,05 

Độ lệch chuẩn 
của xác suất 
của hàm 𝑓 
nhận giá trị 

nhỏ hơn 
VaR0,05 

Số dòng bằng  
n = 5.000  

1,6154 0,0072 3,0802 0,0025 0,0500 0,0021 

Số dòng bằng  

𝑛×𝑝j = 5.000×𝑝j 

1,6152 0,0102 3,0800 0,0036 0,0500 0,0030 

 

Kết quả tính toán từ Bảng 3 cho thấy rằng trong cả hai trường hợp thì kết quả của  VaR0,05 và 
CVaR0,05 là xấp xỉ nhau và đều đạt xác suất kỳ vọng từ –∞ đến VaR0,05 xấp xỉ bằng 0,05. Tuy nhiên, 
trong trường hợp mô phỏng với số dòng bằng n thì kết quả có sai lệch nhỏ hơn so với trường hợp mô 
phỏng với số dòng bằng 𝑛×𝑝j, điều này hợp lý vì trường hợp mô phỏng với số dòng bằng n dẫn đến 
có số lượng mô phỏng theo mỗi dòng là nhiều hơn (tức là n + n = 2n), còn trường hợp mô phỏng với 
số dòng bằng 𝑛×𝑝j dẫn đến có số lượng mô phỏng theo mỗi dòng là ít hơn (tức là 𝑛×𝑝j	1

jO- =
1×𝑛 = 𝑛). 

Tóm lại, trong tất cả các trường hợp với các xác suất thành phần bất kỳ (0 < 𝑝j < 1, 𝑗 = 1,𝑚), 
tác giả khuyến khích sử dụng trường hợp mô phỏng số cột bằng 𝑛 và số dòng bằng 𝑛×𝑝j sẽ cho kết 
quả tính tương đối chính xác và cần số lượng mô phỏng không quá nhiều. 

4. Ứng dụng tính toán VaR và CVaR	bằng mô phỏng Monte Carlo thông qua hỗn 

hợp các phân phối xác suất 

Đối với một bộ dữ liệu, đặc biệt các dữ liệu thực tế như giá chứng khoán, tỷ giá… thì việc bộ dữ 
liệu chỉ tuân theo một phân phối xác suất là rất hiếm khi xảy ra, kể cả dữ liệu có dạng đối xứng như 
phân phối chuẩn, phân phối Student hay có dạng lệch như phân phối Gamma, phân phối Weibull, 
phân phối Beta… Do đó, tác giả cho rằng cần mô hình hóa dữ liệu thông qua hỗn hợp các phân phối 
xác suất. Và tất nhiên, đối với dữ liệu tuân theo một phân phối xác suất có tính toán các giá trị VaRa 
và CVaRa thì cũng cần tính toán các giá trị này cho hỗn hợp các phân phối xác suất. Trong phần này, 
tác giả tiến hành tính toán các giá trị VaRa và CVaRa trong một số trường hợp đặc biệt như hỗn hợp 
hai phân phối đối xứng, hỗn hợp hai phân phối lệch, hỗn hợp ba phân phối bao gồm cả phân phối lệch 
và không lệch. Bên cạnh đó, tác giả cũng tính toán các giá trị VaR và CVaR dựa trên bộ dữ liệu thực 
về giá chứng khoán Việt Nam. 

Phương pháp tính toán VaRa và CVaRa của tác giả vẫn đúng trong trường hợp bộ dữ liệu chỉ tuân 
theo duy nhất một phân phối xác suất, tức là: 
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𝑝j� = 1, 𝑝j� = 0, 𝑗- ∈ 1,2, … , 𝑗+ − 1 ∪ 𝑗+ + 1, 𝑗+ + 2, … ,𝑚  

4.1.  Hỗn hợp các phân phối xác suất 

4.1.1. Hỗn hợp hai phân phối đối xứng 

Trước hết, tác giả tiến hành nghiên cứu về hỗn hợp hai phân phối đối xứng là hai phân phối chuẩn 
là phân phối N(4; 0,22) và N(2; 0,32) với xác suất tương ứng là 0,1 và 0,9 (tác giả muốn chứng minh 
trong trường hợp xác suất thành phần chênh lệch nhau quá nhiều thì kết quả vẫn chính xác). Hình ảnh 
của phân phối hỗn hợp được biểu diễn qua Hình 2. 

 

 
Hình 2. Hình dạng của phân phối xác suất hỗn hợp 0,1 × N(4; 0,22)  + 0,9 × N(2;	0,32) 

Kết quả từ Bảng 4 cho thấy xác suất thành phần của các phân phối có nhiều khác biệt thì phương 
pháp mô phỏng Monte Carlo của tác giả vẫn đảm bảo xác suất đuôi trái xấp xỉ giá trị xác suất mong 
muốn là 0,1. Hơn nữa, khi số lượng mô phỏng càng lớn thì xác suất đuôi trái càng gần giá trị xác suất 
mong muốn hơn và càng ổn định hơn thông qua giá trị độ lệch chuẩn càng giảm. 

Bảng 4.  
Các kết quả tính toán VaR0,1 và CVaR0,1 trong trường hợp số lượng mô phỏng số cột lần lượt là  
n = 100; 500; 1.000; 5.000 với hai phân phối đối xứng 

Số lượng mô 
phỏng n 

 

Giá trị 
VaR0,1 

Độ lệch 
chuẩn của 

VaR0,1 

Giá trị  
CVaR0,1 

Độ lệch 
chuẩn của 
CVaR0,1 

Xác suất 
của hàm 𝑓 
nhận giá trị 

nhỏ hơn 
VaR0,1 

Độ lệch chuẩn của 
xác suất của hàm 𝑓 

nhận giá trị nhỏ 
hơn VaR0,1 

100 1,6244 0,0487 2,2675 0,0281 0,0974 0,0261 

500 1,6320 0,0239 2,2770 0,0138 0,0996 0,0135 

1.000 1,6330 0,0168 2,2784 0,0095 0,0999 0,0095 

5.000 1,6335 0,0074 2,2788 0,0042 0,0999 0,0042 
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4.1.2. Hỗn hợp hai phân phối lệch 

Tiếp theo, tác giả sẽ áp dụng phương pháp trên đối với hỗn hợp hai phân phối bất đối xứng hay 
còn gọi là hai phân phối lệch để kiểm tra tính đúng đắn. Trong trường hợp này, tác giả lấy ví dụ tính 
toán dựa trên phân phối lệch là phân phối Weibull W(a; b). Trong đó, các tham số 𝑎 là tham số tỷ lệ 
(Scale Parameter) và tham số 𝑏 là tham số hình dạng (Shape Parameter).  

Phân phối hỗn hợp của hai phân phối Weibull W(20; 10) và W(5; 25)	với xác suất tương ứng là 
0,7 và 0,3 với hình dạng thông qua Hình 3. 

 
Hình 3. Hình dạng của phân phối xác suất hỗn hợp 0,7 × W(20; 10) + 0,3 × W(5; 25) 

Kết quả tính toán VaRa và CVaRa với 𝛼 = 0,1 được biểu diễn trong Bảng 5. Tác giả nhận thấy với 
hỗn hợp các phân phối lệch, phương pháp mô phỏng Monte Carlo vẫn hiệu quả trong các tính toán 
VaRa cũng như CVaRa và cho kết quả tương đối ổn định giữa các lần tính toán. 

Bảng 5.  
Các kết quả tính toán VaR0,1 và CVaR0,1 trong trường hợp số lượng mô phỏng số cột lần lượt là  
n = 100; 500; 1.000; 5.000 với hai phân phối lệch 

Số lượng mô 
phỏng n 

 

Giá trị 
VaR0,1 

Độ lệch 
chuẩn của 

VaR0,1 

Giá trị  
CVaR0,1 

Độ lệch 
chuẩn của 
CVaR0,1 

Xác suất của 
hàm 𝑓 nhận 
giá trị nhỏ 
hơn VaR0,1 

Độ lệch chuẩn 
của xác suất của 
hàm 𝑓 nhận giá 

trị nhỏ hơn 
VaR0,1 

100 4,8133 0,0573 15,7918 0,1989 0,0981 0,0227 

500 4,8192 0,0288 15,8895 0,0901 0,0991 0,0119 

1.000 4,8206 0,0183 15,9027 0,0650 0,0993 0,0076 

5.000 4,8224 0,0087 15,9133 0,0300 0,0999 0,0037 

 

4.1.3. Hỗn hợp ba phân phối đối xứng 

Trong trường hợp này, tác giả cũng áp dụng phương pháp tính toán dựa vào mô phỏng Monte 
Carlo với hỗn hợp các phân phối có nhiều đỉnh hơn, cụ thể là hỗn hợp của ba phân phối chuẩn. Tác 
giả mô phỏng Monte Carlo trong trường hợp hỗn hợp ba phân phối chuẩn N(0; 0,752), N(2; 0,552) và 
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N(6; 0,72) với xác suất lần lượt là 0,4, 0,3 và 0,3. Phân phối hỗn hợp có dạng ba đỉnh được biểu diễn 
thông qua Hình 4. 

 
Hình 4. Hình dạng của phân phối xác suất hỗn hợp  

0,4 × N(0; 0,752) + 0,3 × N(2; 0,552) + 0,3 × N(6; 0,72) 

Tác giả cũng tính toán VaRa và CVaRa với kết quả được thể hiện trong Bảng 6, và cũng giống 
như trường hợp hai đỉnh, trong trường hợp ba đỉnh, kết quả tính toán khá chính xác. 

Bảng 6.  

Các kết quả tính toán VaR0,1 và CVaR0,1 trong trường hợp số lượng mô phỏng số cột lần lượt là  
n = 100; 500; 1.000; 5.000 với ba phân phối đối xứng 

Số lượng mô 
phỏng n 

 

Giá trị 
VaR0,1 

Độ lệch 
chuẩn của 

VaR0,1 

Giá trị  
CVaR0,1 

Độ lệch 
chuẩn của 
CVaR0,1 

Xác suất 
của hàm 𝑓 
nhận giá trị 

nhỏ hơn 
VaR0,1 

Độ lệch chuẩn của 
xác suất của hàm 𝑓 

nhận giá trị nhỏ 
hơn VaR0,1 

100 –0,5090 0,1456 2,7240 0,0657 0,1010 0,0246 

500 –0,5060 0,0720 2,7651 0,0307 0,1004 0,0121 

1.000 –0,5086 0,0529 2,7687 0,0218 0,0998 0,0089 

5.000 –0,5067 0,0234 2,7717 0,0096 0,0999 0,0040 

4.1.4. Hỗn hợp hai phân phối đối xứng và một phân phối lệch 

 
Hình 5. Hình dạng của phân phối xác suất hỗn hợp  

0,4 × N(10; 0,752) + 0,1 × N(2; 0,552) + 0,5 × W(5; 25) 
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 Tác giả cũng tính toán VaRa và CVaRa với kết quả được thể hiện trong Bảng 7, và cũng giống 
như trường hợp ba đỉnh từ các phân phối đối xứng, phương pháp tính toán của tác giả vẫn đưa ra kết 
quả khá chính xác, tuy nhiên với số lượng mô phỏng càng lớn thì các giá trị ước lượng được càng ít 
biến động. 

Bảng 7.  

Các kết quả tính toán VaR0,1 và CVaR0,1 trong trường hợp số lượng mô phỏng số cột lần lượt  
n = 100; 500; 1.000; 5.000 với hai phân phối đối xứng và một phân phối lệch 

Số lượng mô 
phỏng n 

 

Giá trị 
VaR0,1 

Độ lệch 
chuẩn của 

VaR0,1 

Giá trị  
CVaR0,1 

Độ lệch 
chuẩn của 
CVaR0,1 

Xác suất 
của hàm 𝑓 
nhận giá trị 

nhỏ hơn 
VaR0,1 

Độ lệch chuẩn của 
xác suất của hàm 𝑓 

nhận giá trị nhỏ 
hơn VaR0,1 

100 2,8575 0,3162 7,0972 0,0595 0,0913 0,0085 

500 3,2157 0,2425 7,1535 0,0243 0,0979 0,0022 

1.000 3,3601 0,2162 7,1582 0,0179 0,0991 0,0010 

5.000 3,5645 0,1230 7,1616 0,0079 0,0999 0,0003 

 

4.1.5. Hỗn hợp một phân phối đối xứng và hai phân phối lệch 

Cũng giống như các trường hợp trên, đối với trường hợp hỗn hợp của hai phân phối đối xứng, hai 
phân phối lệch, ba phân phối đối xứng, hai phân phối đối xứng và một phân phối lệch thì trong trường 
hợp hỗn hợp của một phân phối đối xứng với hai phân phối lệch được biểu diễn trong Hình 6 và kết 
quả tính toán trong Bảng 7 cũng cho thấy kết quả của tác giả thông qua mô phỏng Monte Carlo có kết 
quả tương đối tốt. 

 
Hình 6. Hình dạng của phân phối xác suất hỗn hợp  

0,3 × N(10; 0,752) + 0,5 × W(20; 10) + 0,2 × W(5; 25) 
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Kết quả tính toán VaR0,1 và CVaR0,1 với α = 0,1 được biểu diễn trong Bảng 8. 

Bảng 8.  

Các kết quả tính toán VaR0,1 và CVaR0,1 trong trường hợp số lượng mô phỏng số cột lần lượt là  
n = 100; 500; 1.000; 5.000 với một phân phối đối xứng và hai phân phối lệch 

Số lượng mô 
phỏng n 

 

Giá trị 
VaR0,1 

Độ lệch 
chuẩn của 

VaR0,1 

Giá trị  
CVaR0,1 

Độ lệch 
chuẩn của 
CVaR0,1 

Xác suất 
của hàm 𝑓 
nhận giá trị 

nhỏ hơn 
VaR0,1 

Độ lệch chuẩn của 
xác suất của hàm 𝑓 

nhận giá trị nhỏ 
hơn VaR0,1 

100 4,9022 0,0558 14,3531 0,1897 0,0922 0,0186 

500 4,9188 0,0303 14,4475 0,0824 0,0973 0,0105 

1.000 4,9245 0,0206 14,4587 0,0583 0,0991 0,0072 

5.000 4,9265 0,0089 14,4667 0,0264 0,0998 0,0031 

 

4.2.  Ứng dụng vào dữ liệu giá chứng khoán Việt Nam 

Đối với dữ liệu thực giá chứng khoán, hàm mật độ xác suất không chỉ có dạng một phân phối xác 
suất, hỗn hợp của hai phân phối xác suất, hỗn hợp của ba phân phối xác suất mà còn có thể là hỗn 
hợp của nhiều phân phối xác suất hơn nữa.  

Trong phần này, tác giả sử dụng giá đóng cửa của mã chứng khoán Công ty Cổ phần Sữa Việt 
Nam (VNM), lấy từ Trung tâm Nghiên cứu Kinh tế – Tài chính, Trường Đại học Kinh tế – Luật, được 
cung cấp bởi Thompson Reuters1 trong khoảng thời gian 5 năm từ 2013–2017. Dữ liệu giá chứng 
khoán VNM trong khoảng thời gian 5 năm được biểu diễn thông qua Hình 7. 

 
Hình 7. Giá đóng cửa của mã chứng khoán VNM giai đoạn 2013–2017 

Một số nghiên cứu thường sử dụng suất sinh lợi return khi nghiên cứu giá đóng cửa theo một 
trong ba công thức từ (12) đến (14), theo Demir & cộng sự (2004). Trong đó, công thức (12) là giá trị 
tuyệt đối của hai giá đóng cửa ở thời điểm t+1 và thời điểm t. Công thức (13) là giá trị tương đối của 

                                         
1 Thompson Reuters (https://www.thomsonreuters.com/en.html) 
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hai giá đóng cửa ở thời điểm t+1 và thời điểm t. Công thức (14) thực chất là hiệu của hai logarit giá 
đóng cửa ở thời điểm t+1 và thời điểm t. 

 𝑟𝑒𝑡𝑢𝑟𝑛- 𝑡 = 𝑃 𝑡 + 1 − 𝑃 𝑡  (12) 

 

𝑟𝑒𝑡𝑢𝑟𝑛/ 𝑡 =
𝑃 𝑡 + 1 − 𝑃 𝑡

𝑃(𝑡)
 (13) 

 

 𝑟𝑒𝑡𝑢𝑟𝑛�(𝑡) = log
𝑃 𝑡 + 1
𝑃 𝑡

	 = log 𝑃 𝑡 + 1 − log 𝑃 𝑡  (14) 

Sau đó, tác giả sẽ lấy xấp xỉ suất sinh lợi return theo phân phối chuẩn, tuy nhiên, khi tác giả xấp 
xỉ bộ dữ liệu suất sinh lợi return theo phân phối chuẩn thì thấy có sự sai khác tương đối nhiều khi 
biểu diễn theo Hình 8. 

 
Hình 8. Xấp xỉ suất sinh lợi return của giá đóng cửa mã chứng khoán VNM  

giai đoạn 2013–2017 theo phân phối chuẩn 

Một vấn đề khác, khi tác giả tính VaRa hoặc CVaRa cho suất sinh lợi thì chỉ tính được giá trị trung 
gian ở giữa, tức là cần phải tính thêm một bước nữa mới tính ra được giá trị thực sự của giá đóng cửa. 
Tuy nhiên, suất sinh lợi lại dựa vào giá đóng cửa ở phiên giao dịch trước đó nữa nên việc tính toán 
VaRa và CVaRa sẽ bị sai lệch nhiều. Chính vì vậy, sự cần thiết phải tính VaRa và CVaRa cho giá 
đóng cửa gốc chứ không phải là suất sinh lợi. Từ đó, tác giả sẽ nghiên cứu hàm mật độ xác suất thực 
nghiệm của giá đóng cửa VNM thông qua Hình 9. Theo đó, đồ thị cho thấy không thể xấp xỉ giá đóng 
cửa của mã chứng khoán VNM theo phân phối chuẩn hay các phân phối xác suất một đỉnh khác, mà 
cần phải xấp xỉ dưới dạng hỗn hợp các phân phối xác suất. 
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Hình 9. Xấp xỉ giá đóng cửa mã chứng khoán VNM giai đoạn 2013–2017 theo phân phối chuẩn 

Tác giả xấp xỉ dữ liệu giá đóng cửa mã chứng khoán VNM dạng hỗn hợp các phân phối chuẩn 
(Gaussian Mixture Model), sau đó sẽ chọn số lượng phân phối hỗn hợp thông qua giá trị nhỏ nhất 
AIC. Giá trị AIC được biểu diễn thông qua Hình 10 với số lượng hỗn hợp các phân phối từ 1 đến 50. 

 
Hình 10. Giá trị AIC khi xấp xỉ giá đóng cửa chứng khoán VNM giai đoạn 2013–2017  

theo hỗn hợp k phân phối chuẩn. 
Do tác giả mong muốn tìm được giá trị nhỏ nhất AIC và Hình 10 đã biểu diễn giá trị AIC có xu 

hướng giảm xuống sau đó lại tăng lên. Giá trị nhỏ nhất AIC tại k = 10 với giá trị 	
min AIC = 11.023. Khi đó, phân phối thực nghiệm của giá đóng cửa VNM được xấp xỉ thông qua 
hỗn hợp các phân phối chuẩn với xác suất, trung bình và độ lệch chuẩn tương ứng được biểu diễn 
trong Bảng 9. 
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Bảng 9.  
Kết quả ước lượng các phân phối chuẩn thành phần 

Số lượng các phân phối Xác suất thành 
phần 

Trung bình phân phối 
chuẩn thành phần 

Độ lệch chuẩn phân phối 
chuẩn thành phần 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0,0976 

0,1214 

0,0475 

0,1576 

0,0445 

0,0751 

0,1676 

0,0860 

0,0288 

0,1740 

73,5031 

101,7594 

115,5858 

64,7660 

48,4524 

148,6572 

64,4093 

69,2342 

191,5414 

134,5834 

23,4555 

62,9683 

282,8473 

11,4777 

7,9097 

2,3120 

12,9181 

0,4278 

83,3419 

101,5937 

  
Kết quả tính toán VaRa và CVaRa với a = 0,1 với được biểu diễn trong Bảng 10. Tác giả cũng 

hoàn toàn tính toán được các giá trị VaRa và CVaRa và các giá trị này vẫn đảm bảo sai số mong muốn.  

Bảng 10.  

Các kết quả tính toán VaR0,1 và CVaR0,1 trong trường hợp số lượng mô phỏng số cột lần lượt là  
n = 100; 500; 1.000; 5.000 với dữ liệu thực tế từ thị trường chứng khoán Việt Nam 

Số lượng mô 
phỏng n 

 

Giá trị 
VaR0,1 

Độ lệch 
chuẩn của 

VaR0,1 

Giá trị  
CVaR0,1 

Độ lệch 
chuẩn 

của 
CVaR0,1 

Xác suất 
của hàm 𝑓 
nhận giá trị 

nhỏ hơn 
VaR0,1 

Độ lệch chuẩn của 
xác suất của hàm 𝑓 

nhận giá trị nhỏ 
hơn VaR0,1 

100 38,5792 7,8162 105,6066 6,5062 0,0944 0,0255 

500 41,3524 2,6976 106,8459 2,8862 0,0992 0,0127 

1.000 41,6546 1,7583 107,1012 2,2444 0,0998 0,0088 

5.000 41,7913 0,7887 107,1752 0,9495 0,0999 0,0040 

 

Tương tự như vậy, tác giả cũng tính toán các giá trị VaRa và CVaRa với a giảm đi một nửa tức 
là a = 0,05. Kết quả được biểu diễn trong Bảng 11. Thông qua kết quả này, tác giả nhận thấy khi số 
lượng mô phỏng quá ít n = 100 trong khi số các phân phối thành phần quá nhiều m = 10 thì giá trị 
VaR0,05 nhận giá trị âm, tức là đây không phải là kết quả có thể xảy ra trong thực tế. Tuy nhiên, khi 
tăng số lượng mô phỏng lên n = 500 đến 5.000, các kết quả VaRa và CVaRa khá xấp xỉ nhau và đảm 
bảo xấp xỉ giá trị mong muốn. 
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Bảng 11.  

Các kết quả tính toán VaR0,05 và CVaR0,05 trong trường hợp số lượng mô phỏng số cột lần lượt là  
n = 100; 500; 1.000; 5.000 với dữ liệu thực tế từ thị trường chứng khoán Việt Nam 

Xác suất 
thành phần 
khác nhau 

Giá trị  
VaR0,05 

Độ lệch 
chuẩn của 

VaR0,05 

Giá trị 
CVaR0,05 

Độ lệch 
chuẩn của 
CVaR0,05 

Xác suất 
của hàm 𝑓 
nhận giá trị 

nhỏ hơn 
VaR0,05 

Độ lệch chuẩn của 
xác suất của hàm 𝑓 

nhận giá trị nhỏ 
hơn VaR0,05 

100 –0,3176 32,2698 100,7468 6,3699 0,0451 0,0189 

500 12,8245 11,1787 102,9000 2,9440 0,0488 0,0087 

1.000 14,0250 8,0753 103,0629 2,1259 0,0492 0,0065 

5.000 15,5072 3,5840 103,2540 0,9409 0,0498 0,0029 

5. Kết luận 

Giá trị gặp rủi ro VaR hay giá trị gặp rủi ro có điều kiện CVaR không phải là một khái niệm mới 
trong các tính toán phân tích tài chính, mà còn được sử dụng rất nhiều trong các bài toán đo lường rủi 
ro. Tuy nhiên, các nghiên cứu chủ yếu dừng lại các tính toán dựa vào một dạng phân phối xác suất 
(đối xứng hoặc bất đối xứng) theo Rockafellar và Uryasev (2000). Trong khi đối với dữ liệu thực tế, 
việc dữ liệu chỉ tuân theo một phân phối xác suất hầu như là rất ít xảy ra, thông thường dữ liệu sẽ có 
dạng tuân theo một hỗn hợp các phân phối xác suất. 

Sau khi xác định được dữ liệu tuân theo một hỗn hợp các phân phối xác suất, việc cần thiết tiếp 
theo là với mỗi mức 𝛼 ∈ (0,1) cần xác định VaRa và CVaRa. Tuy nhiên, một vấn đề cần đặt ra là tính 
toán các giá trị VaRa và CVaRa sao cho vừa đảm bảo nhanh chóng vừa đảm bảo chính xác, tức là các 
giá trị chênh lệch không nhiều và tương đối ổn định. Một phương pháp được đề nghị là phương pháp 
mô phỏng Monte Carlo và cần phải hiệu chỉnh phương pháp Monte Carlo trong tính toán này. Trong 
bài nghiên cứu này, tác giả đã chứng minh sự cần thiết phải hiệu chỉnh phương pháp Monte Carlo nếu 
muốn đảm bảo sai số xác suất so với giá trị 𝛼 cho trước là nhỏ nhất (do cần phải kiểm tra lại có thật 
sự là xác suất từ giá trị nhỏ nhất có thể đến giá trị VaRa đúng bằng 𝛼 hay không).  

Với phương pháp Monte Carlo đã hiệu chỉnh theo đề xuất của tác giả, các kết quả tính toán khá 
chính xác được minh họa trong các trường hợp hỗn hợp hai phân phối đối xứng, hai phân phối lệch, 
ba phân phối đối xứng, hai phân phối đối xứng và một phân phối lệch, một phân phối đối xứng và hai 
phân phối lệch cũng như hỗn hợp 10 phân phối xác suất trong trường hợp dữ liệu thực tế.  

Thêm vào đó, vấn đề khó khăn nhất khi phân tích dữ liệu thực tế đó là cần xét xem dữ liệu thực tế 
tuân theo hỗn hợp của bao nhiêu phân phối xác suất và các tham số thành phần của phân phối xác 
suất này bằng bao nhiêu. Trong bài nghiên cứu, tác giả đã sử dụng chỉ số minAIC để lựa chọn phân 
phối xác suất trong khi thực tế có rất nhiều chỉ số để chọn hỗn hợp các phân phối xác suất phù hợp 
nhất với bộ dữ liệu. Chính vì vậy, trong các nghiên cứu tiếp theo, tác giả sẽ nghiên cứu các phương 
pháp tối ưu nhất trong việc lựa chọn hỗn hợp các phân phối xác suất phù hợp với bộ dữ liệun 
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