Al-khatib,
A. w., Al-Shboul, M. A., & Khattab, M. (2024). How can generative
artificial intelligence improve digital supply chain performance in
manufacturing firms? Analyzing the mediating role of innovation ambidexterity
using hybrid analysis through CB-SEM and PLS-SEM. Technology in Society, 78, 102676.
https://doi.org/10.1016/j.techsoc.2024.102676
Cao,
Z., & Peng, L. (2024). An empirical study of factors influencing usage
intention for generative artificial intelligence products: A case study of
China. Journal of Information Science, 0(0),
01655515241297329. https://doi.org/10.1177/01655515241297329
Guenzi,
P., & Nijssen, E. J. (2020). Studying the antecedents and outcome of social
media use by salespeople using a MOA framework. Industrial Marketing Management, 90, 346-359.
https://doi.org/10.1016/j.indmarman.2020.08.005
Hair,
J. F., Black, W. C., Barbin, B. J., & Anderson, R. E. (2013). Multivariate
Data Analysis (7th ed.). Pearson Education Limited.
Harman,
H. H. (1976). Modern Factor Analysis.
U.S: University of Chicago Press.
Ku,
E. C. S., & Chen, C.-D. (2024). Artificial intelligence innovation of
tourism businesses: From satisfied tourists to continued service usage
intention. International Journal of
Information Management, 76, 102757. https://doi.org/10.1016/j.ijinfomgt.2024.102757
Le,
X. C. (2024a). A hedonic value-based consumer continuance intention model
toward location-based advertising. Revista de Gestão, 31(1), 34-49. https://doi.org/10.1108/REGE-08-2021-0165
Le,
X. C. (2024b). Propagation of information-sharing in social media: The
perspective of intrinsic and extrinsic cues. VINE Journal of Information and Knowledge Management Systems, 54(5),
973-989. https://doi.org/10.1108/VJIKMS-01-2022-0006
Lê
Xuân Cù. (2024). Phân tích vai trò của động lực nội sinh đến hành vi tiếp tục
chia sẻ thông tin trên mạng xã hội. Tạp
chí Khoa học Nông nghiệp Việt Nam, 22(3), 379-388.
Liu,
Y., Zhang, Z., & Wu, Y. (2025). What drives Chinese university students’
long-term use of GenAI? Evidence from the heuristic-systematic model. Education and Information Technologies.
https://doi.org/10.1007/s10639-025-13403-0
Luo,
C., Yang, C., Yuan, R., Liu, Q., Li, P., & He, Y. (2024). Barriers and
facilitators to technology acceptance of socially assistive robots in older
adults - A qualitative study based on the capability, opportunity, and
motivation behavior model (COM-B) and stakeholder perspectives. Geriatric Nursing, 58, 162-170.
https://doi.org/10.1016/j.gerinurse.2024.05.025
MacInnis,
D. J., & Jaworski, B. J. (1989). Information processing from
advertisements: Toward an integrative framework. Journal of Marketing, 53(4), 1-23.
https://doi.org/10.1177/002224298905300401
Nguyen,
T. H., Le, X. C., & Vu, T. H. L. (2022). An extended
technology-organization-environment (TOE) framework for online retailing
utilization in digital transformation: Empirical evidence from Vietnam. Journal of Open Innovation: Technology,
Market, and Complexity, 8(4), 200. https://doi.org/10.3390/joitmc8040200
Trang,
T. T. N., Thang, P. C., & Vo, T. A. (2025). Moderating the AI Revolution:
Perceived threat and generative AI implementation in Vietnamese hospitals. Computers
in Human Behavior Reports, 19, 100774. https://doi.org/10.1016/j.chbr.2025.100774
Tabernero,
C., & Hernández, B. (2011). Self-efficacy and intrinsic motivation guiding
environmental behavior. Environment and
Behavior, 43(5), 658-675. https://doi.org/10.1177/0013916510379759
Thế
Duyệt. (2025). Generative AI sẽ "vẽ" lại ngành ngân hàng Việt Nam
như thế nào trong 3 năm tới?. Truy cập từ
https://genk.vn/generative-ai-se-ve-lai-nganh-ngan-hang-viet-nam-nhu-the-nao-trong-3-nam-toi-20250801152249164.chn
Tong,
L., Toppinen, A., Wang, L., & Berghäll, S. (2023). How motivation,
opportunity, and ability impact sustainable consumption behaviour of fresh
berry products. Journal of Cleaner
Production, 401, 136698. https://doi.org/10.1016/j.jclepro.2023.136698
Tú
Ân. (2024). Ứng dụng GenAI giúp tăng doanh thu
gần 16%. Truy cập ngày 23/08/2024, từ https://baodautu.vn/ung-dung-genai-giup-tang-doanh-thu-gan-16-d223132.html
Vietnamnet.
(2024). Bán lẻ đa kênh ứng dụng AI tăng trải nghiệm khách hàng. Truy cập
từ
https://vietnamnet.vn/ban-le-da-kenh-ung-dung-ai-tang-trai-nghiem-khach-hang-2354812.html
Vinuni.
(2024). Trí tuệ nhân tạo tạo sinh: Khái niệm, đặc điểm và ứng dụng. Truy
cập từ
https://vinuni.edu.vn/vi/tri-tue-nhan-tao-tao-sinh-khai-niem-dac-diem-va-ung-dung/
Xu,
X.-Y., Gao, Y.-X., & Jia, Q.-D. (2023). The role of social commerce for
enhancing consumers’ involvement in the cross-border product: Evidence from SEM
and ANN based on MOA framework. Journal
of Retailing and Consumer Services, 71, 103187.
https://doi.org/10.1016/j.jretconser.2022.103187
Yilmaz,
R., & Yilmaz, F. G. K. (2023). The effect of generative artificial
intelligence (AI)-based tool use on students' computational thinking skills,
programming self-efficacy and motivation. Computers
and Education: Artificial Intelligence, 4, 100147.
https://doi.org/10.1016/j.caeai.2023.100147
Zhang,
L., & Xu, J. (2025). The paradox of self-efficacy and technological
dependence: Unraveling generative AI's impact on university students' task
completion. The Internet and Higher
Education, 65, 100978. https://doi.org/10.1016/j.iheduc.2024.100978
Zhou,
Y., Zhang, Y., Furuoka, F., & Kumar, S. (2024). The antecedents and
outcomes of electronic customer-to-customer interaction: A PLS-SEM and fsQCA
approach. Journal of Research in
Interactive Marketing, 18(5), 836-864.
https://doi.org/10.1108/JRIM-11-2023-0397